Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140582

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the worldwide COVID-19 pandemic. Animal models are extremely helpful for testing vaccines and therapeutics and for dissecting the viral and host factors that contribute to disease severity and transmissibility. Here, we report the assessment and comparison of intranasal and small particle (~3 µm) aerosol SARS-CoV-2 exposure in ferrets. The primary endpoints for analysis were clinical signs of disease, recovery of the virus in the upper respiratory tract, and the severity of damage within the respiratory tract. This work demonstrated that ferrets were productively infected with SARS-CoV-2 following either intranasal or small particle aerosol exposure. SARS-CoV-2 infection of ferrets resulted in an asymptomatic disease course following either intranasal or small particle aerosol exposure, with no clinical signs, significant weight loss, or fever. In both aerosol and intranasal ferret models, SARS-CoV-2 replication, viral genomes, and viral antigens were detected within the upper respiratory tract, with little to no viral material detected in the lungs. The ferrets exhibited a specific IgG immune response to the SARS-CoV-2 full spike protein. Mild pathological findings included inflammation, necrosis, and edema within nasal turbinates, which correlated to positive immunohistochemical staining for the SARS-CoV-2 virus. Environmental sampling was performed following intranasal exposure of ferrets, and SARS-CoV-2 genomic material was detected on the feeders and nesting areas from days 2-10 post-exposure. We conclude that both intranasal and small particle aerosol ferret models displayed measurable parameters that could be utilized for future studies, including transmission studies and testing SARS-CoV-2 vaccines and therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Hurones , Vacunas contra la COVID-19 , Pandemias , Aerosoles y Gotitas Respiratorias , Modelos Animales de Enfermedad
2.
AJPM Focus ; 2(4): 100141, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37885754

RESUMEN

Introduction: Reported confirmed cases represent a small portion of overall true cases for many infectious diseases. The undercounting of true cases can be considerable when a significant portion of infected individuals are asymptomatic or minimally symptomatic, as is the case with COVID-19. Seroprevalence studies are an efficient way to assess the extent to which true cases are undercounted during a large-scale outbreak and can inform efforts to improve case identification and reporting. Methods: A longitudinal seroprevalence study of active duty U.S. military members was conducted from May 2020 through June 2021. A random selection of service member serum samples submitted to the Department of Defense Serum Repository was analyzed for the presence of antibodies reactive to SARS-CoV-2. The monthly seroprevalence rates were compared with those of cumulative confirmed cases reported during the study period. Results: Seroprevalence was 2.3% in May 2020 and increased to 74.0% by June 2021. The estimated true case count based on seroprevalence was 9.3 times greater than monthly reported cases at the beginning of the study period and fell to 1.7 by the end of the study. Conclusions: In our sample, confirmed case counts significantly underestimated true cases of COVID-19. The increased availability of testing over the study period and enhanced efforts to detect asymptomatic and minimally symptomatic cases likely contributed to the fall in the seroprevalence to reported case ratio.

3.
Antimicrob Agents Chemother ; 67(1): e0135322, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36519929

RESUMEN

Adintrevimab is a human immunoglobulin G1 monoclonal antibody engineered to have broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other SARS-like coronaviruses with pandemic potential. In both Syrian golden hamster and rhesus macaque models, prophylactic administration of a single dose of adintrevimab provided protection against SARS-CoV-2/WA1/2020 infection in a dose-dependent manner, as measured by significant reductions in lung viral load and virus-induced lung pathology, and by inhibition of viral replication in the upper and lower respiratory tract.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , COVID-19/prevención & control , Anticuerpos Monoclonales/uso terapéutico , Macaca mulatta , Pulmón/patología , Mesocricetus , Anticuerpos Antivirales/uso terapéutico , Glicoproteína de la Espiga del Coronavirus
4.
RSC Med Chem ; 12(10): 1757-1764, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34778776

RESUMEN

NendoU (NSP15) is an Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond. Our in-house library was subjected to high throughput virtual screening (HTVS) to identify compounds with potential to inhibit NendoU enzyme, high-rank compounds (those that bound to multiple target structures) were further subjected to 100 nanoseconds MD simulations. Among these, one was found to be bound highly stable within the active site of the NendoU protein structure. Here, we are reporting a derivative of piperazine based '(2S,3S)-3-amino-1-(4-(4-(tert-butyl)benzyl)piperazin-1-yl)-4-phenylbutan-2-ol' (IV) from our in-house libraries having potential efficacy against SARS-CoV-2 in in vitro assays. This compound demonstrated inhibition of viral replication at the same level as Ivermectin, a known SARS-CoV-2 inhibitor, which is not used due to its toxicity at a higher than the currently approved dosage. Compound IV was not toxic to the cell lines up to a 50 µM concentration and exhibited IC50s of 4.97 µM and 8.46 µM in viral entry and spread assay, respectively. Therefore, this novel class of NendoU inhibitor could provide new insights for the development of treatment options for COVID-19.

5.
Bioorg Med Chem ; 47: 116393, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509862

RESUMEN

The continued toll of COVID-19 has halted the smooth functioning of civilization on a global scale. With a limited understanding of all the essential components of viral machinery and the lack of structural information of this new virus, initial drug discovery efforts had limited success. The availability of high-resolution crystal structures of functionally essential SARS-CoV-2 proteins, including 3CLpro, supports the development of target-specific therapeutics. 3CLpro, the main protease responsible for the processing of viral polypeptide, plays a vital role in SARS-CoV-2 viral replication and translation and is an important target in other coronaviruses. Additionally, 3CLpro is the target of repurposed drugs, such as lopinavir and ritonavir. In this study, target proteins were retrieved from the protein data bank (PDB IDs: 6 M03, 6LU7, 2GZ7, 6 W63, 6SQS, 6YB7, and 6YVF) representing different open states of the main protease to accommodate macromolecular substrate. A hydroxyethylamine (HEA) library was constructed from harvested chemical structures from all the series being used in our laboratories for screening against malaria and Leishmania parasites. The database consisted of ∼1000 structure entries, of which 70% were new to ChemSpider at the time of screening. This in-house library was subjected to high throughput virtual screening (HTVS), followed by standard precision (SP) and then extra precision (XP) docking (Schrodinger LLC 2021). The ligand strain and complex energy of top hits were calculated by Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method. Promising hit compounds (n = 40) specifically binding to 3CLpro with high energy and average MM/GBSA scores were then subjected to (100-ns) MD simulations. Using this sequential selection followed by an in-silico validation approach, we found a promising HEA-based compound (N,N'-((3S,3'S)-piperazine-1,4-diylbis(3-hydroxy-1-phenylbutane-4,2-diyl))bis(2-(5-methyl-1,3-dioxoisoindolin-2-yl)-3-phenylpropanamide)), which showed high in vitro antiviral activity against SARS-CoV-2. Further to reduce the size of the otherwise larger ligand, a pharmacophore-based predicted library of âˆ¼42 derivatives was constructed, which were added to the previous compound library and rescreened virtually. Out of several hits from the predicted library, two compounds were synthesized, tested against SARS-CoV-2 culture, and found to have markedly improved antiviral activity.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Etilaminas/química , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Animales , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Proteasas 3C de Coronavirus/metabolismo , Etilaminas/metabolismo , Etilaminas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , SARS-CoV-2/aislamiento & purificación , Termodinámica , Células Vero
6.
Int J Biol Macromol ; 183: 203-212, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33915212

RESUMEN

The world is currently facing a novel coronavirus (SARS-CoV-2) pandemic. The greatest threat that is disrupting the normal functioning of society is the exceptionally high species independent transmission. Drug repurposing is understood to be the best strategy to immediately deploy well-characterized agents against new pathogens. Several repurposable drugs are already in evaluation for determining suitability to treat COVID-19. One such promising compound includes heparin, which is widely used in reducing thrombotic events associated with COVID-19 induced pathology. As part of identifying target-specific antiviral compounds among FDA and world-approved libraries using high-throughput virtual screening (HTVS), we previously evaluated top hits for anti-SARS-CoV-2 activity. Here, we report results of highly efficacious viral entry blocking properties of heparin (IC50 = 12.3 nM) in the complete virus assay, and further, propose ways to use it as a potential transmission blocker. Exploring further, our in-silico analysis indicated that the heparin interacts with post-translational glycoconjugates present on spike proteins. The patterns of accessible spike-glycoconjugates in open and closed states are completely contrasted by one another. Heparin-binding to the open conformation of spike structurally supports the state and may aid ACE2 binding as reported with cell surface-bound heparan sulfate. We also studied spike protein mutant variants' heparin interactions for possible resistance. Based on available data and optimal absorption properties by the skin, heparin could potentially be used to block SARS-CoV-2 transmission. Studies should be designed to exploit its nanomolar antiviral activity to formulate heparin as topical or inhalation-based formulations, particularly on exposed areas and sites of primary viremia e.g. ACE2 rich epithelia of the eye (conjunctiva/lids), nasal cavity, and mouth.


Asunto(s)
Reposicionamiento de Medicamentos , Heparina/química , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , COVID-19/prevención & control , COVID-19/transmisión , Heparina/uso terapéutico , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Tratamiento Farmacológico de COVID-19
7.
Methods ; 195: 57-71, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33453392

RESUMEN

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.


Asunto(s)
Antivirales/administración & dosificación , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos/normas , Indoles/administración & dosificación , Maleimidas/administración & dosificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Antivirales/metabolismo , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Reposicionamiento de Medicamentos/normas , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Indoles/química , Indoles/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Simulación del Acoplamiento Molecular/métodos , Simulación del Acoplamiento Molecular/normas , Estructura Secundaria de Proteína , Reproducibilidad de los Resultados , SARS-CoV-2/química
8.
Transfusion ; 60(5): 1024-1031, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32129478

RESUMEN

BACKGROUND: In 2014, passive immunization by transfusion of Ebola convalescent plasma (ECP) was considered for treating patients with acute Ebola virus disease (EVD). Early Ebola virus (EBOV) seroconversion confers a survival advantage in natural infection, hence transfusion of ECP plasma with high levels of neutralizing EBOV antibodies is a potential passive immune therapy. Techniques to reduce the risk of other transfusion-transmitted infections (TTIs) are warranted as recent ECP survivors are ineligible as routine blood donors. As part of an ongoing clinical trial to evaluate the safety and effectiveness of ECP, the impact of amotosalen/UVA pathogen reduction technology (PRT) on EBOV antibody characteristics was examined. STUDY DESIGN AND METHODS: Serum and plasma samples were collected from EVD-recovered subjects at multiple timepoints and evaluated by ELISA for antibodies to recombinant EBOV glycoprotein (GP) and irradiated whole EBOV antigen, as well as for EBOV microneutralization, classic plaque reduction neutralization test (PRNT) and EBOV pseudovirion neutralization assay (PsVNA) activity. RESULTS: Six subjects donated 40 individual ECP units. Substantial antibody titers and neutralizing activity results were demonstrated but were generally lower for the ACD plasma samples compared to the serum samples. Anti-EBOV titers by all assays remained essentially unchanged after PRT. CONCLUSION: Treatment of ECP with PRT to reduce the risk of TTI did not significantly reduce EBOV IgG antibody titers or neutralizing activity. Although ECP was used in the treatment of repatriated patients, no PRT units from this study were transfused to EVD patients. This inventory of PRT-treated ECP is currently available for future clinical evaluation.


Asunto(s)
Anticuerpos Neutralizantes/análisis , Donantes de Sangre , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/sangre , Inmunidad Activa , Plasma/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/uso terapéutico , Chlorocebus aethiops , Convalecencia , Ficusina/farmacología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Inmunidad Activa/fisiología , Inmunización Pasiva/métodos , Pruebas de Neutralización , Plasma/efectos de los fármacos , Seroconversión/fisiología , Estados Unidos , Células Vero , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
9.
Proc Natl Acad Sci U S A ; 117(7): 3768-3778, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015126

RESUMEN

Antibody-based therapies are a promising treatment option for managing ebolavirus infections. Several Ebola virus (EBOV)-specific and, more recently, pan-ebolavirus antibody cocktails have been described. Here, we report the development and assessment of a Sudan virus (SUDV)-specific antibody cocktail. We produced a panel of SUDV glycoprotein (GP)-specific human chimeric monoclonal antibodies (mAbs) using both plant and mammalian expression systems and completed head-to-head in vitro and in vivo evaluations. Neutralizing activity, competitive binding groups, and epitope specificity of SUDV mAbs were defined before assessing protective efficacy of individual mAbs using a mouse model of SUDV infection. Of the mAbs tested, GP base-binding mAbs were more potent neutralizers and more protective than glycan cap- or mucin-like domain-binding mAbs. No significant difference was observed between plant and mammalian mAbs in any of our in vitro or in vivo evaluations. Based on in vitro and rodent testing, a combination of two SUDV-specific mAbs, one base binding (16F6) and one glycan cap binding (X10H2), was down-selected for assessment in a macaque model of SUDV infection. This cocktail, RIID F6-H2, provided protection from SUDV infection in rhesus macaques when administered at 50 mg/kg on days 4 and 6 postinfection. RIID F6-H2 is an effective postexposure SUDV therapy and provides a potential treatment option for managing human SUDV infection.


Asunto(s)
Anticuerpos Antivirales/administración & dosificación , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/administración & dosificación , Modelos Animales de Enfermedad , Ebolavirus/genética , Femenino , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoterapia , Macaca mulatta , Masculino , Ratones , Proteínas Virales/inmunología
10.
Cell Host Microbe ; 27(2): 262-276.e4, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32053790

RESUMEN

Evolution of antibody repertoire against the Ebola virus (EBOV) proteome was characterized in an acutely infected patient receiving supportive care alone to elucidate virus-host interactions over time. Differential kinetics are observed for IgM-IgG-IgA epitope diversity, antibody binding, and affinity maturation to EBOV proteins. During acute illness, antibodies predominate to VP40 and glycoprotein (GP). At day 13 of clinical illness, a marked increase in antibody titers to most EBOV proteins and affinity maturation to GP is associated with rapid decline in viral replication and illness severity. At one year, despite undetectable virus, a diverse IgM repertoire against VP40 and GP epitopes is observed suggesting occult viral persistence. Rabbit immunization experiments identify key immunodominant sites of GP, while challenge studies in mice found these epitopes induce EBOV-neutralizing antibodies and protect against lethal EBOV challenge. This study reveals markers of viral persistence and provides promising approaches for development and evaluation of vaccines and therapeutics.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Epítopos/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/terapia , Humanos , Inmunoglobulina A/aislamiento & purificación , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina M/aislamiento & purificación , Ratones , Proteoma/inmunología , Conejos , Sobrevivientes , Proteínas del Envoltorio Viral/inmunología , Proteínas de la Matriz Viral/inmunología , Proteínas Virales/inmunología , Vacunas Virales
11.
Viruses ; 10(6)2018 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-29861435

RESUMEN

Sudan virus (SUDV) and Ebola viruses (EBOV) are both members of the Ebolavirus genus and have been sources of epidemics and outbreaks for several decades. We present here the generation and characterization of cross-reactive antibodies to both SUDV and EBOV, which were produced in a cell-free system and protective against SUDV in mice. A non-human primate, cynomolgus macaque, was immunized with viral-replicon particles expressing the glycoprotein of SUDV-Boniface (8A). Two separate antibody fragment phage display libraries were constructed after four immunogen injections. Both libraries were screened first against the SUDV and a second library was cross-selected against EBOV-Kikwit. Sequencing of 288 selected clones from the two distinct libraries identified 58 clones with distinct VH and VL sequences. Many of these clones were cross-reactive to EBOV and SUDV and able to neutralize SUDV. Three of these recombinant antibodies (X10B1, X10F3, and X10H2) were produced in the scFv-Fc format utilizing a cell-free production system. Mice that were challenged with SUDV-Boniface receiving 100µg of the X10B1/X10H2 scFv-Fc combination 6 and 48-h post-exposure demonstrated partial protection individually and complete protection as a combination. The data herein suggests these antibodies may be promising candidates for further therapeutic development.


Asunto(s)
Anticuerpos Antivirales/farmacología , Ebolavirus , Fiebre Hemorrágica Ebola/terapia , Glicoproteínas de Membrana/inmunología , Profilaxis Posexposición , Vacunas de Partículas Similares a Virus/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Anticuerpos Neutralizantes/farmacología , Técnicas de Visualización de Superficie Celular , Reacciones Cruzadas , Femenino , Macaca , Masculino , Ratones , Ratones Noqueados , Anticuerpos de Cadena Única/farmacología , Vacunación
12.
J Infect Dis ; 218(4): 555-562, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29659889

RESUMEN

Background: Ebola virus (EBOV) neutralizing antibody in plasma may reduce viral load following administration of plasma to patients with Ebola virus disease (EVD), but measurement of these antibodies is complex. Methods: Anti-EBOV antibody was measured by 2 neutralization and 2 enzyme-linked immunosorbent assays (ELISAs) in convalescent plasma (ECP) from 100 EVD survivor donors in Liberia. Viral load was assessed repetitively in patients with EVD participating in a clinical trial of enhanced standard of care plus ECP. Results: All 4 anti-EBOV assays were highly concordant for detection of EBOV antibody. Antibodies were not detected in plasma specimens obtained from 15 of 100 donors, including 7 with documented EBOV-positive reverse-transcription polymerase chain reaction during EVD. Viral load was reduced following each dose in the 2 clinical trial participants who received ECP with higher antibody levels but not in the 2 who received ECP with lower antibody levels. Conclusions: Recovery from EVD can occur with absence of detectable anti-EBOV antibody several months after disease onset. ELISAs may be useful to select ECP donors or identify ECP units that contain neutralizing antibody. ECP with higher anti-EBOV antibody levels may have greater effect on EBOV load-an observation that requires further investigation. Clinical Trials Registration: NCT02333578.


Asunto(s)
Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/sangre , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Carga Viral , Adolescente , Adulto , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Fiebre Hemorrágica Ebola/terapia , Humanos , Inmunización Pasiva , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/sangre , Liberia , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Plasma/inmunología , Plasma/virología , Adulto Joven
13.
J Biol Chem ; 293(16): 6201-6211, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29500195

RESUMEN

Filoviruses (family Filoviridae) include five ebolaviruses and Marburg virus. These pathogens cause a rapidly progressing and severe viral disease with high mortality rates (generally 30-90%). Outbreaks of filovirus disease are sporadic and, until recently, were limited to less than 500 cases. However, the 2013-2016 epidemic in western Africa, caused by Ebola virus (EBOV), illustrated the potential of filovirus outbreaks to escalate to a much larger scale (over 28,000 suspected cases). mAbs against the envelope glycoprotein represent a promising therapeutic platform for managing filovirus infections. However, mAbs that exhibit neutralization or protective properties against multiple filoviruses are rare. Here we examined a panel of engineered bi- and trispecific antibodies, in which variable domains of mAbs that target epitopes from multiple filoviruses were combined, for their capacity to neutralize viral infection across filovirus species. We found that bispecific combinations targeting EBOV and Sudan virus (another ebolavirus), provide potent cross-neutralization and protection in mice. Furthermore, trispecific combinations, targeting EBOV, Sudan virus, and Marburg virus, exhibited strong neutralization potential against all three viruses. These results provide important insights into multispecific antibody engineering against filoviruses and will inform future immunotherapeutic discoveries.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Marburgvirus/inmunología , Ingeniería de Proteínas , Proteínas Virales/inmunología , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/genética , Epítopos/inmunología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/genética
14.
Immunol Lett ; 190: 289-295, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28890093

RESUMEN

The Sudan virus (SUDV), an ebolavirus, causes severe hemorrhagic fever with human case fatality rates of ∼50%. Previous work from our lab demonstrated the synthetic antibody F4 potently inhibits viral entry and protects against lethal virus challenge in mice [Chen et al., ACS Chem. Biol., 2014, 9, 2263-2273]. Here, we explore mechanistic requirements as well as contribution of the Fc region and function on neutralization and in vivo protection. Live cell imaging demonstrates that the antibody colocalizes with vesicular stomatitis virus particles containing the Sudan virus glycoprotein (VSV-GPSUDV) and that the antibody is rapidly degraded within cellular endosomes. A viral escape mutant contained substitutions on the N-heptad repeat (NHR) segment of GP2, the fusion subunit. Truncation studies indicated that the size of the Fc impacts virus neutralization potential. Finally, we examined the protective efficacy of Fc-null mutants in mice, and found that Fc function was not required for high levels of protection. Altogether, these results indicate that neutralization of SUDV GP-mediated cell entry likely involves blockade of viral membrane fusion within endosomes, and that inhibition of viral entry is the likely mechanism of in vivo protection.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fragmentos Fc de Inmunoglobulinas/genética , Animales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Células HEK293 , Humanos , Fusión de Membrana , Ratones , Ratones Noqueados , Mutación/genética , Proteínas del Envoltorio Viral/inmunología , Internalización del Virus
15.
MAbs ; 9(4): 696-703, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28287337

RESUMEN

Marburg virus (MARV) and Ebola virus (EBOV) have been a source of epidemics and outbreaks for several decades. We present here the generation and characterization of the first protective antibodies specific for wild-type MARV. Non-human primates (NHP), cynomolgus macaques, were immunized with viral-replicon particles expressing the glycoproteins (GP) of MARV (Ci67 isolate). An antibody fragment (single-chain variable fragment, scFv) phage display library was built after four immunogen injections, and screened against the GP1-649 of MARV. Sequencing of 192 selected clones identified 18 clones with distinct VH and VL sequences. Four of these recombinant antibodies (R4A1, R4B11, R4G2, and R3F6) were produced in the scFv-Fc format for in vivo studies. Mice that were challenged with wild-type Marburg virus (Ci67 isolate) receiving 100 µg of scFv-Fc on days -1, 1 and 3 demonstrated protective efficacies ranging from 75-100%. The amino-acid sequences of the scFv-Fcs are similar to those of their human germline counterparts, sharing an identity ranging between 68 and 100% to human germline immunoglobulin. These results demonstrate for the first time that recombinant antibodies offer protection against wild-type MARV, and suggest they may be promising candidates for further therapeutic development especially due to their human homology.


Asunto(s)
Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Marburgvirus/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Humanos , Macaca fascicularis
16.
Sci Rep ; 6: 19193, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758505

RESUMEN

Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct. Few antibodies with cross-neutralizing properties have been described to date. We used antibody engineering to develop novel bispecific antibodies (Bis-mAbs) that are cross-reactive toward base epitopes on GP from EBOV and SUDV. These Bis-mAbs exhibit potent neutralization against EBOV and SUDV GP pseudotyped viruses as well as authentic pathogens, and confer a high degree (in one case 100%) post-exposure protection of mice from both viruses. Our studies show that a single agent that targets the GP base epitopes is sufficient for protection in mice; such agents could be included in panfilovirus therapeutic antibody cocktails.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Profilaxis Posexposición , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Afinidad de Anticuerpos/inmunología , Línea Celular , Reacciones Cruzadas , Modelos Animales de Enfermedad , Ebolavirus/clasificación , Humanos , Ratones , Pruebas de Neutralización , Unión Proteica , Ingeniería de Proteínas
17.
J Infect Dis ; 212 Suppl 2: S282-94, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25943199

RESUMEN

A major obstacle in ebolavirus research is the lack of a small-animal model for Sudan virus (SUDV), as well as other wild-type (WT) ebolaviruses. Here, we expand on research by Bray and by Lever et al suggesting that WT ebolaviruses are pathogenic in mice deficient for the type 1 interferon (IFN) α/ß receptor (IFNα/ßR-/-). We examined the disease course of several WT ebolaviruses: Boneface (SUDV/Bon) and Gulu variants of SUDV, Ebola virus (EBOV), Bundibugyo virus (BDBV), Taï Forest virus, and Reston virus (RESTV). We determined that exposure to WT SUDV or EBOV results in reproducible signs of disease in IFNα/ßR-/- mice, as measured by weight loss and partial lethality. Vaccination with the SUDV or EBOV glycoprotein (GP)-expressing Venezuelan equine encephalitis viral replicon particle vaccine protected these mice from SUDV/Bon and EBOV challenge, respectively. Treatment with SUDV- or EBOV-specific anti-GP antibodies protected mice from challenge when delivered 1-3 days after infection. Serial sampling experiments revealed evidence of disseminated intravascular coagulation in the livers of mice infected with the Boneface variant of SUDV, EBOV, and BDBV. Taken together, these data solidify the IFNα/ßR-/- mouse as an important and useful model for the study of WT EBOV disease.


Asunto(s)
Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Receptor de Interferón alfa y beta/deficiencia , Virulencia/fisiología , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Modelos Animales de Enfermedad , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/metabolismo , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Ratones , Ratones Endogámicos C57BL , Replicón/inmunología , Vacunación/métodos , Células Vero/virología , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Virulencia/inmunología
18.
ACS Chem Biol ; 9(10): 2263-73, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25140871

RESUMEN

The ebolaviruses cause severe and rapidly progressing hemorrhagic fever. There are five ebolavirus species; although much is known about Zaire ebolavirus (EBOV) and its neutralization by antibodies, little is known about Sudan ebolavirus (SUDV), which is emerging with increasing frequency. Here we describe monoclonal antibodies containing a human framework that potently inhibit infection by SUDV and protect mice from lethal challenge. The murine antibody 16F6, which binds the SUDV envelope glycoprotein (GP), served as the starting point for design. Sequence and structural alignment revealed similarities between 16F6 and YADS1, a synthetic antibody with a humanized scaffold. A focused phage library was constructed and screened to impart 16F6-like recognition properties onto the YADS1 scaffold. A panel of 17 antibodies were characterized and found to have a range of neutralization potentials against a pseudotype virus infection model. Neutralization correlated with GP binding as determined by ELISA. Two of these clones, E10 and F4, potently inhibited authentic SUDV and conferred protection and memory immunity in mice from lethal SUDV challenge. E10 and F4 were further shown to bind to the same epitope on GP as 16F6 with comparable affinities. These antibodies represent strong immunotherapeutic candidates for treatment of SUDV infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos/administración & dosificación , Antígenos Virales/inmunología , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/prevención & control , Receptores de Interferón/fisiología , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos Neutralizantes/química , Antígenos Virales/química , Ebolavirus/inmunología , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Biblioteca de Péptidos , Conformación Proteica , Homología de Secuencia de Aminoácido , Sudán
19.
J Virol ; 87(9): 4952-64, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23408633

RESUMEN

There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.


Asunto(s)
Ebolavirus/inmunología , Virus de la Encefalitis Equina Venezolana/genética , Fiebre Hemorrágica Ebola/prevención & control , Replicón , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Ebolavirus/genética , Virus de la Encefalitis Equina Venezolana/fisiología , Vectores Genéticos/genética , Vectores Genéticos/fisiología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Macaca fascicularis , Vacunación , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
20.
Proc Natl Acad Sci U S A ; 109(13): 5034-9, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22411795

RESUMEN

Antibody therapies to prevent or limit filovirus infections have received modest interest in recent years, in part because of early negative experimental evidence. We have overcome the limitations of this approach, leveraging the use of antibody from nonhuman primates (NHPs) that survived challenge to filoviruses under controlled conditions. By using concentrated, polyclonal IgG antibody from these survivors, we treated filovirus-infected NHPs with multiple doses administered over the clinical phase of disease. In the first study, Marburg virus (MARV)-infected NHPs were treated 15 to 30 min postexposure with virus-specific IgG, with additional treatments on days 4 and 8 postexposure. The postexposure IgG treatment was completely protective, with no signs of disease or detectable viremia. MARV-specific IgM antibody responses were generated, and all macaques survived rechallenge with MARV, suggesting that they generated an immune response to virus replication. In the next set of studies, NHPs were infected with MARV or Ebola virus (EBOV), and treatments were delayed 48 h, with additional treatments on days 4 and 8 postexposure. The delayed treatments protected both MARV- and EBOV-challenged NHPs. In both studies, two of the three IgG-treated NHPs had no clinical signs of illness, with the third NHP developing mild and delayed signs of disease followed by full recovery. These studies clearly demonstrate that postexposure antibody treatments can protect NHPs and open avenues for filovirus therapies for human use using established Food and Drug Administration-approved polyclonal or monoclonal antibody technologies.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Filoviridae/inmunología , Infecciones por Filoviridae/prevención & control , Filoviridae/inmunología , Macaca mulatta/inmunología , Macaca mulatta/virología , Animales , Fraccionamiento Químico , Ebolavirus/inmunología , Infecciones por Filoviridae/virología , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/inmunología , Marburgvirus/inmunología , Pruebas de Neutralización , Especificidad de la Especie , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...